
Scene Style Network (SSN): Disentangling
Layout and Texture for Image Synthesis

Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

Stanford University
{kevintan,eadeli,jniebles}@cs.stanford.edu

Abstract. Controllable image synthesis is challenging because it re-
quires an understanding of both the layout and texture of a visual scene.
Previous works that perform layout-to-image generation offer control
over the layout, but lack the ability to simultaneously control the style.
In this work, we propose Scene Style Network (SSN), which explicitly
separates between a layout pathway and texture pathway during the syn-
thesis. The layout pathway obtains a layout representation given an input
scene graph with a graph convolution network and mask network. The
texture pathway leverages a joint layout-texture embedding space to gen-
erate the texture at multiple resolution scales. In this way, SSN enables
improved layout-texture awareness for conditional image synthesis. We
demonstrate that the learned joint layout-texture latent space exhibits
higher disentanglement compared to that of prior works. Additionally,
we evaluate the quality of generated images and demonstrate that SSN
outperforms several baselines on the Visual Genome dataset.

1 Introduction

People understand the visual world as a sum of its parts. Our effortless mental
ability to simulate and imagine what will happen crucially depends on a scene
representation that is compositional with respect to objects and their relation-
ships [31,38]. In cognitive science, structural description models represent visual
concepts as compositions of parts and relationships, which provide a strong in-
ductive bias for constructing models capable of reasoning about new objects [13].
However, current deep approaches to image synthesis struggle with generating
realistic images without introducing unwanted artifacts. In this work, we argue
that the compositionality of objects and their relations are crucial for image
synthesis in a manner that offers control over both the layout and texture.

Controllable image synthesis is a key task in computer vision research with
applications in image editing [46], 3D scene understanding [10], and inverse
graphics [28]. A key challenge in controllable image generation is to learn repre-
sentations that exhibit high disentanglement between the high-level contents of
the scene (layout) and the fine-grained details (texture). Previous holistic-based
works either disregard the texture when generating images from layout, or disre-
gard the layout when generated styled images. Class-conditional GANs such as
ACGAN [34] or BigGAN [4] are not able to interpolate between latent factors

2 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

Layout
Pathway

Texture
Pathway

Input Scene Graph

Scene Layout

Joint layout-
texture

embedding

Fixed Texture

Synthesis
Network With texture

Without texture

(a)

(b)

(c) (d)

Fig. 1: Scene Style Network (SSN) takes as input a scene graph and texture and
outputs a corresponding image that respects the spatial layout while preserv-
ing the visual texture. The (a) layout pathway obtains a layout with a graph
convolution network and mask network M from an input scene graph. The (b)
texture pathway takes in a texture and produces a (c) joint layout-texture em-
bedding code w ∈ W. The synthesis network (d) leverages w to fix the texture
at multiple resolution scales to synthesize the output image.

of variation without changing the visual texture. Recently, Locatello et al. [29]
demonstrated that unsupervised disentanglement learning is impossible without
an additional model inductive bias. This motivates us to explore the inductive
bias of compositional layout-awareness in order to disentangle the object layout
from visual textures. With these insights, we observe that layout and texture
should be decoupled from one another, and bridge the gap between them to
demonstrate more controllable image synthesis.

To this end, we propose Scene Style Network (SSN) (Figure 1), a novel frame-
work for image generation with control over layout and texture. The main tech-
nical innovation is to learn a joint layout-texture intermediate embedding space
(Figure 1c) that compactly encodes the fine-grained details with spatial aware-
ness. Given an input scene graph, the layout pathway (Figure 1a) obtains the
scene layout with a graph convolution network (GCN) and mask network. The
texture pathway (Figure 1b) samples a latent texture code z, extracts a layout
embedding with the scene layout extractor (Figure 4a), and passes the concate-
nation of the two latent codes through the mapping f : Z → W (Figure 4b) to
obtain an intermediate joint layout-texture latent code w ∈ W. Then, the syn-
thesis network (Figure 1d) injects w into progressively growing synthesis blocks
(Figure 4c) to synthesize the output image. Crucially, the layout and textures are
explicitly decoupled until the joint embedding. In this way, SSN automatically
learns which textures align with which regions in the spatial layout, to generate
a plausible output image satisfying the layout and texture constraints.

SSN: Disentangling Layout and Texture for Image Synthesis 3

We perform several experiments to demonstrate the effectiveness of SSN.
The generated images achieve comparable state-of-the-art performance on image
generation tasks on the Visual Genome [27] dataset, a structured knowledge-base
dataset of images with scene graphs. We show that when the mask network is
trained on the Coco-Stuff [5] dataset, it is an effective way to bootstrap the
training of the synthesis network. Style mixing experiments demonstrate that
SSN is capable of indepdently sampling generated images that fixate on a single
texture. In addition, SSN shows an advantage over prior works such as StyleGAN
[23] by learning a joint layout-texture embedding space W that exhibits higher
disentanglement as measured by the Perceptual Path Length [23].

To summarize our main contributions: (1) we introduce Scene Style Network
(SSN) which consists of a layout pathway that processes the input scene graph
via graph convolution, and a texture pathway that synthesizes the image by in-
jecting style into progressively growing upsampling blocks; (2) we demonstrate
that the learned joint layout-texture embedding space enables controlled image
synthesis with respect to an input scene graph and fixed texture; (3) we propose
a modification to Perceptual Path Length (PPL) [23] that is better suited for
measuring the disentanglement of learned latent space in natural scenes as op-
posed to human faces; (4) we show that SSN outperforms previous baselines on
image generation and disentanglement evaluations.

2 Related Work

Conditional image synthesis Conditional image generation is the task of gen-
erating images conditioned on an additional input source. Pix2pix [18] is a fully
supervised method that requires aligned pairs of samples from two domains.
Generative adversarial networks (GANs), autoregressive models, and variational
autoencoders (VAEs) have achieved great success in conditional image gener-
ation. Various methods study how to feed the condition the additional input,
e.g., class information [33,34,47], source image [25], or a text description [36,48].
In this work, we condition on scene layout by obtaining an intermediate joint
layout-texture embedding before performing the generator forward pass.

Deep image manipulation Recent advancements in image manipulation by
deep neural networks have enabled various image editing tasks such as style
transfer [11], image-to-image translation [52], automatic colorization [49], and
3D-aware scene editing [28]. Most similar to our work is that of Ashual et al. [2]
where the proposed method for image generation from scene graphs includes an
intermediate layout embedding and appearance embedding. While they demon-
strate the ability to import elements from other images and selecting appearance
archetypes given user input, the manipulated synthesis results are sensitive to
changes in texture, and often introduce unwanted artifacts.

Deep learning on graphs There are some works which propose to learn feature
embeddings for graph nodes given a single large graph [12,35,45]. This is similar
to word vector embeddings, e.g., word2vec [32], which are typically employed

4 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

for natural language processing tasks. Our work uses a scene graph processing
pipeline similar to Johnson et al. [20]. The main focus of our work is, however,
not on how to obtain the scene layout, but rather how to use it to obtain a joint
layout-texture embedding.

Disentanglement learning Learning disentangled representations in an un-
supervised or self-supervised manner has recently received great attention. In-
foGAN [7] presents an information-theoretic extension to GANs demonstrating
learned disentangled factors. β-VAE [15] proposes a modification of the varia-
tional autoencoder (VAE) framework by introducing a weighting factor to bal-
ance the likelihood and KL divergence. However, these methods do not guarantee
that the learned latent factors are semantically meaningful in a way that gives
fine-grained control of the generation. The analysis of Locatello et al. [29] show
that fully unsupervised disentanglement learning is impossible without the ad-
dition of a model inductive bias. In this work, we build upon this hypothesis by
inducing the bias of explicitly decoupling the layout and texture before the joint
layout-texture embedding.

Image generation from layout Several works have proposed to generate im-
ages consistent with layout. Some previous methods use the layout information
as an intermediate representation between other input sources, e.g., text [16] and
scene graphs [20], and the output image. Others use the layout as a complemen-
tary feature for image generation based on contextual text [21, 37, 44] or shape
and lighting [8]. Typically, as done in [16] and [20], the scene layout is obtained
through a multiple stage pipeline in which a semantic layout with bounding
boxes and object masks is first obtained, then a separate image generator is
used to reconstruct the layout to an RGB image.

Recently, [51] achieves state-of-the-art reconfigurable layout-to-image genera-
tion, but focuses on low-resolution images of 64×64 and requires a computation-
ally expensive convolutional LSTM; [42] also focuses on low-resolution images
and is unable to control the textures of the generated image. In contrast to these
works, our method is able to (i) condition on an additional texture to obtain a
joint layout-texture embedding, (ii) subsequently inject the layout-texture into a
desired resolution during the progressively-growing synthesis (inspired by [23]),
and (iii) quantitatively demonstrate a disentangled intermediate latent space.

3 Scene Style Network

We propose Scene Style Network (SSN) which generates a realistic image corre-
sponding to the constraints of two inputs: (1) a scene graph describing objects
and their relationships, and (2) an input style representing the texture of the
desired image. Figure 1 provides an overview of the proposed method. The tech-
nical challenges are three-fold: first, we must develop a method for processing the
graph structure to obtain a dense encoding that retains spatial structure; second,
we must ensure that the layout is preserved throughout the each resolution of
the progressive generator network; third, we must ensure that the textures are

SSN: Disentangling Layout and Texture for Image Synthesis 5

generated
images

with
texture

generated
images

with
texture

Fig. 2: The diversity across generated images and fixed texture obtained from
our method on 256 × 256 Visual Genome generated images (n = 4). A texture
z ∼ N (0, 1) ∈ R512 is fixed for each sample across the columns.

preserved in the output image. In the following, we will describe the architecture
overview of SSN (Figure 1).

3.1 Layout Pathway

The goal of the layout pathway (Figure 1a) is to obtain a scene layout from the
input scene graph. We describe, in turn, the architectural details of the scene
graph input representation, graph convolution network, and mask network for
obtaining the layout. See Figure 3 for an overview.

Scene graphs A scene graph [20] is a structured representation of an image,
where nodes in a scene graph correspond to object bounding boxes with their
object categories, and edges correspond to their pairwise relationships between
objects. Formally, a scene graph is defined by a 3-tuple set G = {B,O,R}:
• B = {b1, b2, ..., bn} is the region candidate set, with elements bi ∈ R4 denot-

ing the bounding box of the ith region
• O = {o1, o2, ..., on} is the object set, with element oi ∈ N denoting the

corresponding class label of region bi
• R = {r1, r2, ..., rm} of pairwise relationships between those objects, where rk

denotes a triplet of a start node (bi, oi) ∈ B×O, an end node (bj , oj) ∈ B×O,
and a relationship label xi→j ∈ R.R is the set of all possible predicate types.

For every image I and the corresponding scene graph G, we obtain the ob-
ject embeddings eobj and relation embeddings erel via two embedding layers of
dimensionality 128. Similar to processing input text in neural language models,
the embedding layers are lookup tables where the keys are the the object or
relation index and the values are the object or relation dense vectors of size 128.

Graph convolution network We utilize graph convolution networks [20, 40]
(GCN) to aggregate contextual spatial information over the output of the re-
lation proposal network. The purpose of the GCN is to transform the node

6 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

…

!!

!"

!#

Mask Network Object Layout Scene Layout

Graph Convolution

"

"

"

surrounding

wall-concreteabovegrass

airplane

inside

below

couch

wall-panel

below

ceiling

window

floor

above

grass

below

giraffe left of

below

structural-other

right of

house

fence

cage

above

grass

right of gravel

above

treebelow

tree

Scene Graph

Fig. 3: Overview of the layout pathway (similar to [20]) which obtains a scene
layout from scene graphs. The input scene graph is processed with a graph con-
volutional network that aggregates per-object contextual embeddings by passing
along information of its neighboring edges. The object embeddings are then used
to regress bounding boxes, predict masks, and compute a global scene layout.

embeddings into a new set of context-aware embeddings. For fair comparisons,
we follow the same high-level architecture as proposed in [20]. Specifically, given
input vectors eobj, erel ∈ RDin for all objects oi ∈ O and edges (oi, r, oj) ∈ E, the
new nodes and edges are computed using three functions gs, gp, go which predict
the subject oi, predicate r, and object oj , respectively. The forward pass imple-
ments gs, gp, go with a 2-layer MLP that passes a concatenation of the triples
input [oi, r, oj] through a hidden layer with dimensionality 512 followed by three
output heads. Since some objects can exist in many relationships, we address
this by utilizing average pooling over the object embeddings.

Mask network The mask network [20] takes in the location embeddings of
each object and feeds it into a mask regression network which predicts object
pseudo-binary masks m̂i ∈ M ×M as well as a bounding box regressor which
outputs bounding box b̂i = [x1, y1, x2, y2]T ∈ [0, 1]4 from a MLP. Note that
the bounding box represents the coordinates as ratio of the image dimensions
and not the absolute positions. To avoid overfitting, we follow [2] in injecting
per-object random noise zi ∼ N (0, 1) ∈ R64 as additional input to the mask
network M to generate stochasticity in the masks. The mask regression network
terminates with a sigmoid nonlinearity to force the masks to lie in range (0, 1).

To compute the object layout ti for a single object oi, we shift and scale the
mask m̂i according to the ratio of bounding box b̂i resulting in a mask m′i ∈
RH×W . Then, we compute the appearance embedding ai with the appearance
network which is a CNN that extracts feature maps with output dimensionality
set to 32 from the cropped image containing object i. The object layout ti is
then the result of the tensor product between m′i and ai.

SSN: Disentangling Layout and Texture for Image Synthesis 7

Scene Layout

3x3 Conv

ReLU

Max Pool

Linear 128x4x4

3x3 Conv

ReLU

Max Pool

…Layout Embedding

(a)

Concat

Linear (512x2, 512)

Linear (512, 512)

…

Linear (512, 512)

8

Texture…
…

4x4

8x8

256x256

Synthesis

Block

Synthesis

Block

Synthesis

Block

Layout Embedding

(b)

Const 4x4x512

AdaIN

3x3 Conv

Upsample

Synthesis Block

Layout-Texture

Joint Embedding

(c)

Fig. 4: Overview of the texture pathway which generates an image given a joint
layout-texture latent code. The mapping f , parameterized by 8 fully-connected
layers, learns a joint layout-texture embedding to produce w ∈ W. (a) Scene
layout extractor obtains a compressed dense encoding of the scene that retains
spatial structure. (b) Synthesis network injects the layout-texture joint embed-
ding vector to progressively-growing [22] synthesis blocks. (c) Synthesis block
for an arbitrary resolution to iteratively upsample the generated image.

3.2 Texture Pathway

The goal of the texture pathway (Figure 1b) is to generate an image given a joint
layout-texture latent code z ∈ Z. To do this, we first obtain the joint layout-
texture embedding via the scene layout extractor, then synthesize the output
image by fixing the texture at multiple synthesis blocks of varying resolutions.
Figure 4 provides a schematic overview, and Figure 2 demonstrates how the
texture pathway is able to perform multiple layout-to-image generations while
fixing control over the texture. Note that the image corresponding with the
fixed texture in Figure 1 is for illustrative purposes only. In practice, we sample
a latent code z ∈ Z that represents the visual texture of the illustrated image.

Scene layout extractor We introduce a novel scene layout extractor module
(Figure 4a) for obtaining a dense encoding of a scene layout that retains spatial

structure. Specifically, it takes as input a scene layout T =
∑C

i=1 ti as a global
layout representation for all objects, and outputs a latent code ẑ ∈ R512. The
scene layout T is passed through two consecutive downsampling blocks which
each consist of 3×3 convolutional layers, ReLU nonlinearity, and max pool layer,
followed by a final linear layer with input size 128×4×4 which outputs a latent
embedding ẑ ∈ R512 to be fed as input to the synthesis network.

Joint layout-texture embedding The joint layout-texture embedding (Figure
1c) aggregates the spatial structure from the layout pathway and fine-grained

8 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

details from the texture pathway into a joint latent space. Importantly, the
texture pathway is decoupled from the layout pathway up until this point.

3.3 Synthesis Network

Generator Given the scene layout and a style texture, we must synthesize
an image that respects the layout while retaining the textures. The input to
the generator is z′ = [z; ẑ] where z ∼ N (0, 1) and ẑ is obtained via the scene
layout extractor, and ; denotes concatenation along the feature axis. Then, z′

is fed into the mapping network f : Z → W to obtain an intermediate latent
encoding w ∈ W. In our experiments, f is an 8-layer MLP. For fair comparison
to StyleGAN, we set the embedding dimensionality of both Z and W to 512.

To synthesize the output image in RGB from w, we use a synthesis network
consisting of resolution-specific synthesis blocks inspired by StyleGAN [23], a
style-based architecture for generative adversarial networks. Our generator aug-
ments StyleGAN to perform layout-conditional generation and learns a joint
intermediate embedding space w ∈ W. We follow similar architecture design
choices for the synthesis network (Figure 4b) and synthesis blocks (Figure 4c).
The synthesis network g consists of 2 layers per resolution from 4 × 4, 8 ×
8, ..., 256× 256. Joint layout-texture latent codes w control the synthesis blocks
through adaptive instance normalization (AdaIN) [17] at each convolution layer.
The final layer converts the output to RGB with a 1× 1 convolution.

Discriminators Our method employs three discriminators:

• The mask discriminator Dmask uses a Least Squares GAN (LSGAN) [30]
conditioned on the object class ci. The loss associated with the mask dis-
criminator is given by:

LDmask
= [logDmask(mi, ci)] + Ez∼N (0,1)[log(1−Dmask(M(ei, z), ci] (1)

where mi is the real mask of object i, M(·) is the mask network, ei is the
per-object embedding.

• The image discriminator Dimage ensures that the generated image is realistic
by using a multi-scale LSGAN to compute the sum of LDimage

across full and
half scales. The loss of Dimage is a combination of the real loss and fake loss:

LDimage
= logDimage(I, t)− log(1−Dimage(I

′, t)) (2)

where I is the real image, I ′ is the fake image, and t is the layout.

• The object discriminator Dobject classifies each object as real or fake by
cropping the input pixels and rescaling using bilinear interpolation [19]:

LDobject
=

n∑
i=1

logDobject(I
′
i)− logDobject(Ii) (3)

SSN: Disentangling Layout and Texture for Image Synthesis 9

4 Training

We employ a three-stage training strategy: first, we train the layout pathway
which obtains a scene layout from a scene graph with an autoencoder network
R similar to [2]; second, training the texture pathway by replacing R with the
proposed synthesis network ; third, jointly training the proposed scene layout
extractor with the mapping network f . We use the autoencoder network R to
bootstrap the first stage of training. The layout feature embeddings extracted at
the first layer of the information bottleneck of R are used as input to the scene
layout extractor. The total loss used to optimize the networks is:

L = λ1Lpix + λ2Lbox + λ3Lpercept + λ4LDmask
+ λ5LDimage

+ λ6LDobject
(4)

where Lpix = ||I − Î||1 is the l1 difference between input and generated images,

Lbox =
∑n

i=1 ||bi − b̂i||1 is the l1 loss that penalizes the differences between
the ground truth box and predicted box, and Lpercept =

∑
u∈U

1
u ||V GG

u(I) −
V GG(I ′)||1 is the perceptual loss [50] which compares the l1 between activations
of a V GG network at layer u, summed over all layers u ∈ U .

5 Experiments

In our experiments, we aim to show that our method generates images of com-
plex scenes satisfying the object and relationship specification given by the input
scene graph. Our experiments aim to answer the following questions: (1) How
does the proposed joint layout-texture latent space W contribute to control-
lable synthesis? (2) How well does the object discriminator Dobject enforce that
generated objects look one-by-one real? (3) How do the generated images com-
pare with conditional image generation baselines on Visual Genome? In this
section, we first discuss the datasets (Section 5.1) and implementation details
(5.2), followed by both the qualitative results (Section 5.3) on the tasks of image
generation and style mixing, and lastly the quantitative evaluations on image
generation (Section 5.4) and disentanglement (Section 5.5).

5.1 Datasets

Visual Genome We experiment on Visual Genome (VG) [27] version 1.4 which
comprises 108,077 images annotated with scene graphs. Following [20], we divide
the data into 80% train, 10% val, and 10% test, resulting in 62,565 train, 5,506
val, and 5,088 test images. We use object and relationship categories occurring
at least 2000 and 500 times respectively in the train set, leaving 178 object and
45 relationship types. The number of objects in the image ranges from 3 to 30.

Coco-Stuff We use the Coco-Stuff [5] dataset at resolution of 256×256 to train
the mask network in the first stage of training since VG does not contain the
ground truth masks. Using the same split as previous works [51], we partition
the train, valid, and test sets to 25,972, 1,024, and 2,048, respectively. There are
171 objects, with roughly 3 to 8 objects per image.

10 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

surrounding

sky

right of

clouds

airplane

inside

surrounding

wall-concreteabovefloor

airplane

inside

left-of

couch

metalbelow above

wall-panel

below

ceiling

window

floor

above

fence

right of

metal above

below

pavement

sky bridgeleft of

roadabove

below

bus

floor-tile below toilet

paper right of wall-tile

right of

left oftoiletcabinet

giraffe left of

below

structural-other

right of

house

fence

cage

above

grass

right of gravel

above

treebelow

tree

Fig. 5: Image generation results from an input scene graph on Visual Genome.
For each example, we generate 10 samples to demonstrate control over the col-
orization. From an input scene graph, SSN is able to control both the spatial
layout as well as the fine-grained textural details.

5.2 Implementation Details

In our experiments, the generator network shares the architecture of StyleGAN
[24] aside from the mapping network f . We train on VG with resolution 256×256
and batch size 32. Total training time takes more than 6 days on 4 Titan RTX
resulting in more than 8.3M images processed. We use Adam [26] optimizer with
initial learning rate 0.002. We use an exponential moving average of the weights
of the generator Gema with a channel multiplier of 2 between synthesis blocks.
To learn the joint layout-texture embedding, we freeze the weights in synthesis
blocks and discriminator and finetune the mapping network f : Z → W, with
the first dense layer containing 1024× 512 + 512 = 524, 800 parameters.

5.3 Qualitative Results

Image Generation Fig 5 shows qualitative image generation results from an
input scene graph on Visual Genome (256× 256). Our model is able to synthe-
size an image consistent with the input scene graph while also retaining con-
trol over the fine-grained textural details, as shown by the diversity across the
columns. In contrast to [51] and [42], we generate images at higher resolution
and show sharper object boundaries when sampling multiple times for a single
layout. In every row, the scene layout remains unchanged and the objects do not
show morphing artifacts across independent samples of the texture z ∈ Z. This

SSN: Disentangling Layout and Texture for Image Synthesis 11

Table 1: Evaluating the quality of generated images on Visual Genome (VG)
with the Inception Score (IS) and Fréchet Inception Distance (FID) scores.

Method Resolution IS FID

Real Images 64× 64 13.9 ± 0.5 —
pix2pix [18] 64× 64 2.7 ± 0.02 142.86
sg2im [20] (GT Layout) 64× 64 6.3 ± 0.2 74.61
layout2im [51] 64× 64 8.1 ± 0.1 31.25
LostGAN [42] 64× 64 8.7 ± 0.4 34.75

Real Images 128× 128 20.5 ± 1.5 —
LostGAN [42] 128× 128 11.1 ± 0.6 29.36

Real Images 256× 256 29.3 ± 2.1 —
SSN (ours) (No concat) 256× 256 17.0 ± 1.1 32.51
SSN (ours) 256× 256 21.6 ± 1.6 24.11

demonstrates the ability of SNN to control texture independently of layout. The
converse, i.e., the ability to control layout independently of texture, is demon-
strated in Figure 2, where in rows 2 and 4, the texture remains unchanged across
various layouts. Together, these two demonstrate how the explicit decoupling of
the layout and texture pathways enable improved control of the synthesis.

Style Mixing We perform style mixing experiments to demonstrate how vary-
ing style controls meaningful high-level attributes of the output image. To gen-
erate a style mixed image, we generate two random latent codes z1, z2 and
obtain corresponding intermediate latent codes w1,w2 via the mapping net-
work f parameterized by an 8-layer MLP. The latent codes w1,w2 control
the styles through the synthesis network by applying w1 to styles before a
chosen injection index and applying w2 after. Specifically, the injection index
j ∈ {1, ..., log(N) ∗ 2− 2} is a function of the max resolution size of the output
image, e.g., N = {256, 512, 1024}.

Fig 6 shows the result of style mixing on N = 256 resolution images from
Visual Genome. Given an batch of input scene graphs (n = 8) and a fixed texture
z ∈ N (0, 1) ∈ E512, we generate n style-mixed images for each injection position.
From these examples, we observe that we can modify a generated image to a
desired texture without substantially manipulating the scene layout, especially
for the middle injections (rows 6-9). For example, the plane in row 7, column 3
retains the foreground content while successfully manipulating the background.
Early injections (rows 1-5) may change the contents of the scene but the spatial
layout remains in tact. Late injections (rows 10-12) do not change high-level
contents, but rather small fine-grained details such as color. Note that injection
of texture in the last position fully reconstructs the generated sample.

5.4 Evaluating Image Generation

Metrics We measure the image quality based on the Inception Score (IS) [39]
and Fréchet inception distance (FID) Score [14]. The Inception Score measures

12 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

Mixing(z_1, z_2) z_2 samples (fixed)z_1 samples

Texture

Sample

1

2

3

4

5

6

7

8

9

10

11

12

Ea
rly

M
id
dl
e

La
te

Fig. 6: Style mixing on 256 × 256 images from Visual Genome. Given a fixed
texture (leftmost column), we generate n = 8 independent samples from the
synthesis network by applying the texture across varying injection points corre-
sponding to progressively growing resolutions.

SSN: Disentangling Layout and Texture for Image Synthesis 13

both the quality of the generated images as well as their diversity. Following
previous literature, a pre-trained Inception [43] network is used for computing
feature activations. Higher Inception Scores are better. The FID score measures
the distance between the distributions of the generated and real images when
modelled as multivariate Gaussians. Fréchet inception distance is more robust to
noise than Inception Score. Lower FID scores are better. Despite some flaws in
Inception Score as pointed out by Barratt and Sharma et al. [3], we nevertheless
employ these two evaluation metrics as approximate measures of sample quality
due to their popularity and for fair comparison against prior works.

Results We show quantitative results on Inception Score (IS) and Fréchet In-
ception Distance (FID) Score on Visual Genome at the 64× 64, 128× 128, and
256× 256 resolutions in Table 1. The results from prior works [18,20,42,51] are
listed at the resolutions in which they are reported in the literature. We also
report the IS on real images for comparison. For calculating FID, we use 50,000
samples and batch size of 32 due to memory constraints. The proposed method
(SSN) outperforms several baselines on all metrics across two settings: with and
without the concatenation of z′ = [z; ẑ]. Note that in this experimental setting
without a fixed texture, choosing to not use concatenate the layout embedding is
equivalent to StyleGAN [23]. We observe significantly better results when con-
ditioning the synthesis network on the layout embedding. These experiments
demonstrate the effectiveness of SSN on conditional image generation.

5.5 Evaluating Disentanglement

Metrics A natural desirable trait for learned generative models is for the latent
space to exhibit high disentanglement, i.e., a latent space which consists of linear
subspaces, each of which controls a single semantically-meaningful factor of vari-
ation. There are several definitions of disentanglement [1,6,9], but in this work we
measure disentanglement with a modification of Perceptual Path Length (PPL)
as proposed by [23]. Intuitively, since it should be easier to generate realistic
images from a disentangled representation than an entangled representation, we
posit that the generator network is incentivized to favor learning semantically-
meaningful linear factors of variation through the mapping f : Z → W. Lower
PPL scores are a measure of a more disentangled space.

To compute the perceptual path length in Z, we fix the scene layout for a
single batch for fair comparison of images generated from interpolations. The
perceptual path length of Z over all possible endpoints and n layouts is:

lZ = E
[

1

ε2
d(G(slerp(z1, z2; t), T), G(slerp(z1, z2; t+ ε), T))

]
(5)

where z1, z2 ∼ P (z), t ∼ U(0, 1), T is the scene layout, slerp denotes spher-
ical interpolation, and G is the generator network. The distance metric d(·, ·)
evaluates the perceptual distance between the resulting fake images given by a
perceptually-based pairwise image distance [50] calculated via a weighted differ-
ence between two VGG16 [41] embeddings. Since latent vectors in W are not

14 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

Table 2: Perceptual Path Length (PPL) results on Visual Genome with resolution
256 × 256. Lower PPL is better for latent space W. Higher PPL is better for
latent space Z.

Method Space Crop PPL

StyleGAN [23] W 3 326.7
StyleGAN [23] W 7 302.4
SSN (ours) W 3 311.8
SSN (ours) W 7 291.4

Method Space Crop PPL

StyleGAN [23] Z 3 769.2
StyleGAN [23] Z 7 737.1
SSN (ours) Z 3 819.7
SSN (ours) Z 7 738.2

normalized in any way, we compute perceptual path lengths lW for W using
linear interpolation instead of spherical interpolation.

Results Table 2 shows the perceptual path lengths (PPL) on Visual Genome
with resolution 256×256. We approximately compute the expectation by taking
5000 samples with a batch size of 64 and ε = 1 × 10−4. In contrast to [23],
we perform experiments without cropping the generated images to prefer a face
prior since we are dealing with natural scenes and not human faces.

Our method demonstrates lower path lengths lW and higher disentanglement
than [23] in W. Note that for fair comparison, we control the dimensionality of
w ∈ W to be 512 in all experiments. We do not make any changes to the
synthesis network besides the weights and bias of the first fully-connected layer.
This demonstrates a smoother manifold of W when fixed on a particular scene
layout. We also show lZ and demonstrate that the latent space Z of our method
is more entangled. This is expected as our strategy for performing conditional
generation is to simply concatenate a latent vector z and scene layout of equal
size. These disentanglement studies demonstrate the effectiveness of the joint
layout-texture latent space in learning a smooth manifold of images conditioned
on the layout.

6 Conclusion

In this work, we introduced Scene Style Network (SSN), a novel framework
that leverages a joint layout-texture intermediate latent space to offer improved
layout-texture control of conditional image synthesis. To achieve this, we pro-
posed to decouple the layout pathway from the texture pathway, in order to
subsequently obtain a joint layout-texture embedding to synthesize the output
image. Importantly, the spatially-aware structure obtained by the layout path-
way is explicitly disentangled from the fine-grained details obtained by the tex-
ture pathway until the joint layout-texture embedding. We showed empirically
that SSN achieves comparable or better than state-of-the-art results for both
conditional image generation and disentanglement tasks.

SSN: Disentangling Layout and Texture for Image Synthesis 15

References

1. Achille, A., Soatto, S.: Emergence of invariance and disentanglement in deep rep-
resentations. Journal of Machine Learning Research 19, 1–34 (09 2018)

2. Ashual, O., Wolf, L.: Specifying object attributes and relations in interactive scene
generation. In: The IEEE International Conference on Computer Vision (ICCV)
(October 2019)

3. Barratt, S., Sharma, R.: A note on the inception score (01 2018)
4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity

natural image synthesis. In: International Conference on Learning Representations
(2019)

5. Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: Thing and stuff classes in context.
In: CVPR (2018)

6. Chen, T.Q., Li, X., Grosse, R., Duvenaud, D.: Isolating sources of disentanglement
in variational autoencoders (2018)

7. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-
gan: Interpretable representation learning by information maximizing generative
adversarial nets. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 29, pp. 2172–2180.
Curran Associates, Inc. (2016)

8. Dosovitskiy, A., Springenberg, J., Brox, T.: Learning to generate chairs with con-
volutional neural networks. Arxiv (11 2014)

9. Eastwood, C.: A framework for the quantitative evaluation of disentangled repre-
sentations (03 2018)

10. Eslami, S.M.A., Rezende, D.J., Besse, F., Viola, F., Morcos, A.S., Garnelo, M.,
Ruderman, A., Rusu, A.A., Danihelka, I., Gregor, K., Reichert, D.P., Buesing,
L., Weber, T., Vinyals, O., Rosenbaum, D., Rabinowitz, N.C., King, H., Hillier,
C., Botvinick, M.M., Wierstra, D., Kavukcuoglu, K., Hassabis, D.: Neural scene
representation and rendering. Science 360, 1204–1210 (2018)

11. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style (2015)
12. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-

ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864. ACM (2016)

13. van den Hengel, A., Russell, C., Dick, A., Bastian, J., Pooley, D., Fleming, L.,
Agapito, L.: Part-based modelling of compound scenes from images. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (June 2015)

14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Guyon,
I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 30, pp. 6626–6637.
Curran Associates, Inc. (2017)

15. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M.M., Mo-
hamed, S., Lerchner, A.: beta-vae: Learning basic visual concepts with a con-
strained variational framework. In: ICLR (2017)

16. Hong, S., Yang, D., Choi, J., Lee, H.: Inferring semantic layout for hierarchical
text-to-image synthesis (01 2018)

17. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: ICCV (2017)

18. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. arxiv (2016)

16 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

19. Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, k.: Spatial transformer
networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R.
(eds.) Advances in Neural Information Processing Systems 28, pp. 2017–2025. Cur-
ran Associates, Inc. (2015)

20. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: CVPR
(2018)

21. Karacan, L., Akata, Z., Erdem, A., Erdem, E.: Learning to generate images of out-
door scenes from attributes and semantic layouts. ArXiv abs/1612.00215 (2016)

22. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for
improved quality, stability, and variation. In: International Conference on Learning
Representations (2018)

23. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. CoRR abs/1812.04948 (2018)

24. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of StyleGAN. CoRR abs/1912.04958 (2019)

25. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain
relations with generative adversarial networks. In: Precup, D., Teh, Y.W. (eds.)
Proceedings of the 34th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 70, pp. 1857–1865. PMLR, International
Convention Centre, Sydney, Australia (06–11 Aug 2017)

26. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014)
27. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalan-

ditis, Y., Li, L.J., Shamma, D.A., Bernstein, M., Fei-Fei, L.: Visual genome: Con-
necting language and vision using crowdsourced dense image annotations (2016)

28. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional in-
verse graphics network. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp.
2539–2547. Curran Associates, Inc. (2015)

29. Locatello, F., Bauer, S., Lučić, M., Rätsch, G., Gelly, S., Schölkopf, B., Bachem,
O.F.: Challenging common assumptions in the unsupervised learning of disentan-
gled representations. In: International Conference on Machine Learning (2019)

30. Mao, X., Li, Q., Xie, H., Lau, R., Wang, Z., Smolley, S.: Least
squares generative adversarial networks. pp. 2813–2821 (10 2017).
https://doi.org/10.1109/ICCV.2017.304

31. Marr, D.: Vision: A Computational Investigation into the Human Representation
and Processing of Visual Information. Henry Holt and Co., Inc., New York, NY,
USA (1982)

32. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Burges, C.J.C., Bot-
tou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural
Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc. (2013)

33. Miyato, T., Koyama, M.: cGANs with projection discriminator. In: International
Conference on Learning Representations (2018)

34. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier
GANs. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Con-
ference on Machine Learning. Proceedings of Machine Learning Research, vol. 70,
pp. 2642–2651. PMLR, International Convention Centre, Sydney, Australia (06–11
Aug 2017)

35. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. CoRR abs/1403.6652 (2014)

https://doi.org/10.1109/ICCV.2017.304

SSN: Disentangling Layout and Texture for Image Synthesis 17

36. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative ad-
versarial text to image synthesis. In: Balcan, M.F., Weinberger, K.Q. (eds.) Pro-
ceedings of The 33rd International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 48, pp. 1060–1069. PMLR, New York, New
York, USA (20–22 Jun 2016)

37. Reed, S.E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what and
where to draw. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett,
R. (eds.) Advances in Neural Information Processing Systems 29, pp. 217–225.
Curran Associates, Inc. (2016)

38. Riesenhuber, M., Poggio, T.: Models of object recognition. Nature neuroscience 3
Suppl, 1199–204 (12 2000). https://doi.org/10.1038/81479

39. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.,
Chen, X.: Improved techniques for training gans. In: Lee, D.D., Sugiyama, M.,
Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems 29, pp. 2234–2242. Curran Associates, Inc. (2016)

40. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Transactions on Neural Networks 20, 61–80 (2009)

41. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv 1409.1556 (09 2014)

42. Sun, W., Wu, T.: Image synthesis from reconfigurable layout and style. ArXiv
abs/1908.07500 (2019)

43. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Computer
Vision and Pattern Recognition (CVPR) (2015)

44. Tan, F., Feng, S., Ordonez, V.: Text2scene: Generating compositional scenes from
textual descriptions. In: IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) (June 2019)

45. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale infor-
mation network embedding. In: WWW ’15 (2015)

46. Yao, S., Hsu, T.M.H., Zhu, J.Y., Wu, J., Torralba, A., Freeman, W.T., Tenenbaum,
J.B.: 3d-aware scene manipulation via inverse graphics. In: Advances in neural
information processing systems (2018)

47. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative ad-
versarial networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of
the 36th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 97, pp. 7354–7363. PMLR, Long Beach, California, USA
(09–15 Jun 2019)

48. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.: Stack-
gan: Text to photo-realistic image synthesis with stacked generative adversarial
networks. In: ICCV (2017)

49. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV (2016)
50. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable

effectiveness of deep features as a perceptual metric. In: CVPR (2018)
51. Zhao, B., Meng, L., Yin, W., Sigal, L.: Image generation from layout. In: CVPR

(2019)
52. Zhu, J.Y., Park, T., Isola, P., Efros, A.: Unpaired image-to-image trans-

lation using cycle-consistent adversarial networks. pp. 2242–2251 (10 2017).
https://doi.org/10.1109/ICCV.2017.244

https://doi.org/10.1038/81479
https://doi.org/10.1109/ICCV.2017.244

18 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

Supplementary Material

7 Additional Qualitative Results

Fig. 7: Fake images of Visual Genome with StyleGAN. StyleGAN is trained on
images from VG at resolution 256× 256 for more than 7.8M images and 6 days
on 4 TITAN RTX.

SSN: Disentangling Layout and Texture for Image Synthesis 19Style Mixing on VG (A)
• Fix a style code sample_z2 and mix with vanilla generated images
• Inject_index = 3

(a)

Style Mixing on VG (B)
• Fix a style code sample_z2 and mix with vanilla generated images
• Inject_index = 4

(b)

Style Mixing on VG (C)
• Fix a style code sample_z2 and mix with vanilla generated images
• Inject_index = 5

(c)

Fig. 8: Visualizing the diversity of fixed textures. For each of the pairs 10a,
10b, 8c, the left shows 48 unaltered generation images, and the right shows the
corresponding images with fixed texture. Note that the image at (i, j) in the left
preserves the spatial layout at (i, j) in the right.

20 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

Mixing(z_1, z_2) z_2 samples (fixed)z_1 samples Fig. 9: Additional style mixing results similar to Figure 6.

SSN: Disentangling Layout and Texture for Image Synthesis 21

(a)

(b)

Fig. 10: Additional results for fixed texture experiments similar to 2. (Top): un-
altered generated images. (Bottom): generated images with fixed texture along
every row.

22 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

8 Architecture Details

Scene layout extractor

Table 3: Architecture of the scene layout extractor. The semantics of the Conv2d
configuration is (in channels, out channels, kernel size, stride, padding); for Max-
Pool2d it is (kernel size, padding); for Linear it is (in features, out features).

Input Config Shape

SceneLayout — 512× 32× 32

Operation Config Shape

Conv2d 512, 256, 3, 1, 1 256× 32× 32
ReLU — 256× 32× 32

MaxPool2d 2, 2 256× 16× 16
Conv2d 256, 128, 3, 1, 1 128× 16× 16
ReLU — 128× 16× 16

MaxPool2d 2, 2 128× 8× 8
MaxPool2d 2, 2 128× 4× 4

Linear 128× 4× 4, 512 512

Output Config Shape

Concatenate z ∈ Z, SceneLayout 1024

SSN: Disentangling Layout and Texture for Image Synthesis 23

Synthesis network

Table 4: Architecture of the synthesis network. The input z′ = [z; ẑ] is the
concatenation of a sampled texture code z and the SceneLayout (see Table 3).
The PixelNorm layer normalizes the feature vector in each pixel to unit length
with no trainable weights. The ConstantInput layer introduces a trainable layer
of constant input. LeakyReLU uses a negative slope of 0.2. All linear layers
contain a bias parameter. See Table 5 for details of the SynthesisBlock.

Input Config Shape

z′ = [z; ẑ] — 1024

Operation Config Shape

PixelNorm — 1024
Linear1 1024, 512 512

LeakyReLU — 512
Linear2 512, 512 512

LeakyReLU — 512
...

...
...

Linear8 512, 512 512
LeakyReLU — 512

ConstantInput 512, 4 512× 4× 4
SynthesisBlock — 3× 8× 8

...
...

...
SynthesisBlock — 3× 256× 256

24 Kevin Tan, Ehsan Adeli, Juan Carlos Niebles

Synthesis block

Table 5: Architecture of a synthesis block at resolution n × n, where n = 2i

for i = [3, ..., 8]. The notation for a ModulatedConv2d operation is defined as
(in channel, out channel, kernel size, upsample, downsample). NoiseInjection re-
turns the previous feature activations shifted by a scaled trainable weight. Up-
sampling is achieved by nearest neighbor sampling.

Input Config Shape

Input — 512× 2i × 2i

Style — 512

Operation Config Shape

ModulatedConv2d 2i, 2i, 3, False, False 512× 2i+1 × 2i+1

NoiseInjection — 512× 2i+1 × 2i+1

LeakyReLU — 512× 2i+1 × 2i+1

ModulatedConv2d 2i, 2i, 3, True, False 512× 2i+1 × 2i+1

NoiseInjection — 512× 2i+1 × 2i+1

LeakyReLU — 512× 2i+1 × 2i+1

Upsample — 3× 2i+1 × 2i+1

