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Spatiotemporal Learning
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Evidence for Mental Simulation

Shepard & Metzler (1971)
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Figure 2. Reaction times of correct positive responses, plotted as a function of angular difference for
the one-stimulus task (left panel) and for the two-stimulus task (right panel). Within each panel, data
and fitted linear functions are shown separately for the two-dimensional and three-dimensional objects
(2D and 3D, respectively).



Evidence for Mental Simulation

Shepard & Metzler (1971)

One-Stimulus Task Two-Stimulus Task

3 ) 5 it T T
)
hel
c
o
AR 4 12
2 3D
L
E | ) L]
L .
=
°
g .
@ 1k O —=0 41
[+n —_—
- e 2D
g | o~
=

0 1 1 i W — - | 1 | 0

0 45 90 135 180 0 45 90 135 180
Angle of Rotation (degrees) Angle of Rotation (degrees)

Figure 2. Reaction times of correct positive responses, plotted as a function of angular difference for
the one-stimulus task (left panel) and for the two-stimulus task (right panel). Within each panel, data
and fitted linear functions are shown separately for the two-dimensional and three-dimensional objects
(2D and 3D, respectively).

Behaviorism: study of behavior to
identify determinants/causes
Cognitivism: describes mental
processes as information processing
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Behaviorism: study of behavior to
identify determinants/causes
Cognitivism: describes mental
processes as information processing

Q. How can we study mental
simulation at the computational level of
analysis? (Marr, 1982)



Problem Formulation of Spatiotemporal Prediction

Xit1,-- -, Xk = argmax p(Xppa,..., Npk|X—gi1,-..,4).
Xpfd 50058 L K
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Behaviorism: study of behavior to
identify determinants/causes
Cognitivism: describes mental
processes as information processing

Q. How can we study mental
simulation at the computational level of
analysis? (Marr, 1982)

A: Neural networks as a model of the
mind (PDP group)



Brief History on the Development of Neural Networks
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Artificial Neural Networks (ANN)

e [wO components:
o Network architecture (how many neurons and
layers)
o Parameters, or weights, of the connections

output layer
input layer
hidden layer



Artificial Neural Networks (ANN)

e [wO components:
o Network architecture (how many neurons and
layers)
o Parameters, or weights, of the connections
e [earning procedure:
o Feed many examples
o Compute difference between target and actual
via an objective function output layer
o Weights are updated via the backpropagation  inputlayer
algorithm (Rumelhart et al. 1986) hidden layer
o Continue until stopping condition



Sequence Modeling: Recurrent Neural Networks (RNN) (1/3)

o “As you read this [sentence], you understand each word based on your understanding of previous words.
You don’t throw everything away and start thinking from scratch again. Your thoughts have persistence.”
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o “As you read this [sentence], you understand each word based on your understanding of previous words.
You don’t throw everything away and start thinking from scratch again. Your thoughts have persistence.”
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An unrolled recurrent neural network.

https://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
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Sequence Modeling: Long Short-Term Memory (LSTM) (2/3)
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The repeating module in an LSTM contains four interacting layers.

e Introduces four interacting components: cell, input, output, and forget gates
o Cell gate is responsible for accumulating hidden state information over time
o Other gates are responsible for regulating information in and out
https://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
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Sequence Modeling: Stacked LSTMs (3/3)
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Encoding Spatial Information: Convolutional Layers

e [wo distinguishing features:

o Local connectivity: connections only exist between local regions (visual

receptive field)

o Shared weights: assume that any feature learned at one spatial location is

useful at another spatial location

20 C DC OC I
[‘1.101.1.‘5 '

QOO0O0OM

Figure: A ConvNet arranges its neurons in three
dimensions (width, height, depth), as visualized in
one of the layers. Every layer of a ConvNet
transforms the 3D input volume to a 3D output
volume of neuron activations. In this example, the
red input layer holds the image, so its width and
height would be the dimensions of the image, and
the depth would be 3 (Red, Green, Blue
channels).



Spatiotemporal Video Prediction (1/3)

1.  Convolutional LSTM (ConvLSTM) (Shi, Xingjian et al, 2015)
e Encodes spatial information into tensors via convolution
e Hidden states are 3D instead of 2D
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Spatiotemporal Video Prediction (2/3)

1.  Convolutional LSTM (ConvLSTM) (Shi, Xingjian et al, 2015)
2. PredRBNN (Wang, Yunbo et al. 2017)
Memory flow in zigzag direction
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Spatiotemporal Video Prediction (3/3)

1.  Convolutional LSTM (ConvLSTM) (Shi, Xingjian et al, 2015)

2. PredRNN (Wang, Yunbo et al. 2017)

3. Eidetic 3D LSTM (E3D-LSTM) (Wang, Yunbo et al. 2019)

e 3D-Conv inside BRNN cell + attention mechanism
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Design Choices
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Design Choices

1. 3D-Conv vs 2D-Conv inside RNN cell
2. Residual connections architecture in stacked LSTMs
3. Balance between L1 and L2 norm components in loss function



Xy &, X
@ ® ®
™ I N

Frame Frame . Frame

27:T+27

FIGURE 3.1: Architectural design of our approach: E3D-LSTM with

deep residual connections. 4 E3D-LSTMs are stacked in the vertical

direction with residual connections between before layer 3 and before
the decoder. @ denotes the addition operator.



Experiment 1: Moving MNIST

q q 3 =

e 2 handwritten digits bouncing inside 64x64 grid

e 10 — 10: Predict 10 future frames given 10
previous frames (with some similarity metric)

e 10,000/3,000/5,000 sequences for train/valid/test



Experiment 1: Moving MNIST

Model SSIM MSE Model SSIM MSE
ConvLSTM (Shi et al., 2015) 0713 96.5 E3D-LSTM Baseline 0.880 69.8
DEN (Brabandere et al., 2016) 0.726  89.0 E2D-LSTM with [1,5,5] kernel 0.862  75.0
CDNA (Finn, Goodfellow, and Levine, 2016) 0.728 84.2 E3D-LSTM with Residuals 0.890 59.1
FRNN (Oliu, Selva, and Escalera, 2018) 0.819 684
VPN Baseline (Kalchbrenner et al., 2016) 0870 64.1 T T T S T Y
PredRNN (Wang et al., 2017) 0869 56.5 R P .
PredRNN++ (Wang et al., 2018) 0.885 46.3
E3D-LSTM (Wang et al., 2019) 0910 413
E3D-LSTM Finetuned with [; only 09199 395
E3D-LSTM Finetuned with Residualsand I; + 1, 0.9219 425

TABLE 4.1: Results on the Moving MNIST Dataset for the 10 — 10
task. Higher SSIM or lower MSE scores indicate better results. Top:
Previous state-of-the-art models. Bottom: Our experiments finetuned
from pretrained weights demonstrating effectiveness of residual con-

nections.



Experiment 1: Moving MNIST

4 4 4 4
Inputs 7 7 7Y 7 7

Ground Truth

E3D-LSTM Baseline

E3D-LSTM with Residuals

E3D-LSTM Finetuned

FIGURE 4.2: Video prediction examples from Moving MNIST dataset
with 4’ and '7’. E3D-LSTM Finetuned with Residuals and [; + I, loss
demonstrates slightly improved qualitative image clarity.



training loss

Experiment 1: Moving MNIST
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FIGURE 4.1: Left: Comparison of E3D baseline, E2D, and E3D with residual con-

nections. Residuals slightly improve training efficiency and result in faster con-

vergence. Middle: E3D with residual connections comparing equally weighted [

+ Iy loss vs. only I; loss. I loss alone improves final training loss. Right: Compar-
ing addition and concatenation operators for residual connections.




Experiment 2: KTH Action Dataset

25 individuals performing 6 types of actions

Each video clip lasts 4 sec

Resized to 128x128

1-16/17-25 train/test

Task: 10 — 20 (training), extend to 10 — 40 (testing)



Experiment 2: KTH Action Dataset

Model PSNR SSIM
ConvLSTM (Shi et al., 2015) 2358 0712
DEN (Brabandere et al., 2016) 2726 0.794
FRNN (Oliu, Selva, and Escalera, 2018) 26.12 0.771
PredRNN (Wang et al., 2017) 27.55 0.839
PredRNN++ (Wang et al., 2018) 2847  0.865
E3D-LSTM (Wang et al., 2019) 29.31 0.879
E3D-LSTM Baseline 27.73 0.854
E2D-LSTM with [1,5,5] kernel 23.30 0.838
E3D-LSTM with Residuals 2761 0.863

E3D-LSTM Finetuned with Residualsand I; + 1, 29.67 0.881

TABLE 4.2: Results on the KTH Action dataset for the 10 — 20 task.
Higher PSNR and SSIM scores indicate better performance. Top: Pre-
vious state-of-the-art models and results. Middle: Our experiments
trained from scratch. Bottom: Our experiments finetuned from pre-
trained weights demonstrating effectiveness of residual connections.



Experiment 2: KTH Action Dataset
Inputs
Ground Truth
E3D-LSTM 2D Baseline
E3D-LSTM 3D Baseline

E3D-LSTM with Residuals

E3D-LSTM Finetuned

FIGURE 4.3: Video prediction examples from KTH Action dataset on
the 10 — 20 task. E3D-LSTM Finetuned with Residuals and [; + I»
loss demonstrates slightly improved qualitative image clarity.



Summary

3D-Conv inside the RNN cell is important for modelling
spatiotemporal information for long-term video prediction
Residual connections in stacked-LSTM architectures exhibit small
empirical improvements due to their ability to maintain crucial
spatial information from earlier memory layers

Balance between L1 and L2 is crucial in the training process



Analog vs Propositional? (Kosslyn et al. 20006)
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Figure 1: Analog representation of the letter “A”



Analog vs Propositional? (Kosslyn et al. 20006)
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Figure 1: Analog representation of the letter "A” Figure 2: Propositional representation of the letter “A”
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