
CSE250B Programming Project 2: Coordinate Descent

Kevin Tan

February 22, 2019

1. High-level description for coordinate descent method

Coordinate descent (CD) methods solve optimization problems by iteratively performing approximate
minimization along the selected coordinate axis or hyperplane. Rather than moving all coordinates
along a descent direction, CD changes a chosen coordinate at each iterate, moving as if it were on a
grid, with each axis corresponding to each component.

In this assignment, we consider optimizing the loss function L(·) which depends on w ∈ Rd, in the
context of logistic regression. We can approach this by initializing w somehow, then repeatedly
picking a coordinate i ∈ 1, 2, ..., d and updating the value of wi so as to reduce the loss. Within
this framework, there are many different approaches for choosing an index and updating the selected
coordinate.

For choosing the index, we will adopt the greedy method, which chooses an index such that the
objection function is minimized most, i.e. the index at which the gradient is the maximum magnitude.
We use the Gauss-Southwell selection rule (GS):

ik = argmax
1≤j≤d

|∇jL(wk−1)| (1)

For the update scheme, we use the update equation similar to in gradient descent, knowing that L(w)
is convex and differentiable:

wk
i = wk−1

i − αi∇iL(wk−1) (2)

To compute the step-size αi, we use backtracking line search [1]. Note that this approach requires
the function L(·) to be differentiable. Starting at t− 1 and with 0 < β < 1, we update t = βt so long
as the following condition holds:

L(w −∇L(w)) > L(w)− t

2
||∇L(w)||2 (3)

and set the step-size αi = t.

2. Convergence

Intuitively, since the greedy choice of index will always choose the coordinate that minimizes the loss
function the most, we know the loss will always decrease at each iteration. We can then rely on the
step-size to converge to the optimal loss.

From [1], we know that, assuming f : Rn → R is convex and differentiable, and ∇f is Lipschitz
continuous with constant L > 0, backtracking line search is guaranteed to converge at rate O(1/k).

1

3. Experimental Results

We use the UCI Wine Dataset for our experiments, using only the first two classes (n = 130). We
normalize the data to have mean 0 and variance 1 using sklearn.preprocessing.StandardScalar,
and prepend a bias term to the data, resulting in shape (130, 14).

We first use sklearn.linear model.LogisticRegression [3] as a standard logistic regression solver
(without regularization, C = 1010) for a baseline, obtaining a loss L∗ = 3.3329 ∗ 10−5.

Then, we run our algorithm as well as a random-feature selection algorithm (choosing the index to
descend upon at random) and show the results on the graph below. We use the stopping criteria
np.linalg.norm(w new - w, ord=1) < 0.001 for our algorithm, and find that our algorithm ter-
minates after 4000 iterations. To make a fair comparison against random-feature coordinate descent,
we run both algorithms for the same number of iterations (max iter=4000). We use the same back-
tracking line search strategy for choosing the learning rate at each iteration for both approaches. We
initialize w as the zero vector of shape (14,1) with some noise sampled from a normal Gaussian with
mean 0 and variance 0.01.

Figure 1: Training loss of our algorithm (blue) versus random-feature coordinate descent (red)

Experimental results show that, after 4000 iterations, the random-feature approach obtains a loss of
Lrandom = 0.01566, and our approach obtains a loss of Lours = 0.00652, both of which asymptote to
L∗ = 3.3329 ∗ 10−5.

2

4. Critical Evaluation

Future works may empirically compare various approaches to choosing the index upon which to
descend: cyclic, random, and greedy methods. We may try to run extensive experiments with the
same UCI Wine dataset and choose the method that gives the best training loss. Other methods
could be proposed to generalize to other non-smooth problems.

Furthermore, there exists a wide literature [2] of update schemes besides backtracking line search,
which take advantage of choosing a block of coordinates rather than a single coordinate at each
iterate. These methods are more suitable for distributed or parallel computing for larger datasets.

5. Sparse Coordinate Descent (Optional)

My proposal is to add a L1 regularizer to the logistic loss function.

References

[1] https://www.cs.cmu.edu/~ggordon/10725-F12/scribes/10725_Lecture5.pdf

[2] H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin, A primer on coordinate descent algorithms,
arXiv:1610.00040, (2016).

[3] Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel,
O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and
Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E., Scikit-learn:
Machine Learning in Python, Journal of Machine Learning Research, vol. 12, 2011.

3

