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Abstract

Understanding a visual scene requires not only recognizing individual objects,
but also inferring the relationships and interactions between them. Modern deep
generative models have demonstrated remarkable ability in producing high-quality
samples, yet they fail to capture the relationships between objects in a visual scene.
In contrast, scene graphs explicitly model objects and their relationships by a
visually-grounded graphical structure of an image. In this work, we propose an
encoder-decoder method for scene graph generation analogous to autoencoder ar-
chitectures. We additionally introduce image reconstruction as a supervisory signal
to regularize the scene graph generator to address noisy and biased annotations.
We validate our approach on the large-scale Visual Genome benchmark dataset,
demonstrating that our approach can learn to reconstruct images using predicted
scene graphs with similar qualitative results to an oracle relying on ground truth.

1 Introduction

To truly understanding the visual world, our models should be not only recognize images but also
generate them. To this end, modern deep generative models have demonstrated remarkable ability in
synthesizing high-quality, realistic-looking samples. In the lens of probability, generative models are
able to learn an approximation of an underlying distribution p44., given a finite set of observed dataset
D. However, while these methods can give stunning results on limited domains, they still struggle in
more complicated synthesis settings, e.g. on the task of text-to-image synthesis as demonstrated by
Johnson et al. [9].

To address this issue, one idea is to endow generative models with explicit representations that capture
visual context in a compositional manner, in order to (i) generalize effectively to long-tail instances
from the data distribution, and (ii) enjoy better model interpretability compared to blackbox deep
networks. Scene graphs [10] provide a way to represent scenes in this way — as directed graphs,
where the nodes are objects and edges are relationships between objects. In the past, scene graphs
have been used for image retrieval [[10], image captioning [1], or predicting grounded scene graphs
from language priors [[15]. Most work on scene graphs have used the Visual Genome (VG) [[13]]
benchmark for evaluation which is a large-scale dataset that provides human annotations for scene
graphs. However, since VG is hand-crafted by humans, some of the scene graph annotations are noisy
or biased.

In this work, we propose to address the problem of scene graph generation with an additional
constraint of image reconstruction loss such that the learned scene graph generating procedure is
robust to noisy or biased annotations in VG. Similar to autoencoders, our encoder-decoder approach
aims to map an input image to a latent representation, i.e. its corresponding scene graph, and
subsequently reconstruct the image in an end-to-end fashion. The image generator for reconstruction
is conditioned on the scene graph and maps a noise vector to the output image. In this way, our
approach leverages two sources of supervision — both at the scene graph level and at the image level.



Object (5 Subject N

#Z

P R
s mE-O .
aO°D."'D Upsampling Conv

oo-m

Object % object Score Matrix

Conv Feature Relational Proposal Network Attentional GCNs Scene Graph Cascaded Refinement Network Reconstructed Image

Figure 1: Overview of our approach. Given an input image, we first extract region proposals with
an object detector i.e. Faster R-CNN. The relational proposal network (RPN) prunes the connections
in the <subject, relationship, object> by computing a learned relatedness score matrix,
ranking them in descending order, and choosing the top K pairs. Graph convolution is applied to
aggregate contextual information from neighboring nodes to produce a scene graph. To reconstruct an
image, we pass Gaussian noise conditioned on the scene layout into a Cascaded Refinement Network
(CRN) which consists of a series of upsampling convolutions.

Our contributions are two-fold:

e We propose a method for scene graph generation in an end-to-end trainable fashion via
image reconstruction supervision.

e We demonstrate that our method can achieve similar results with predicted scene graphs
compared to an oracle (sg2im [9]) relying on ground truth.

2 Related Work

Scene Graph Generation. A number of approaches for scene graph generation have been proposed
for the detection of objects and their relationships [3]]. Several have noted that explicit reasoning
over the quadratic number of pairwise relationships is intractable, and address this by heuristic
or random methods. Other works have explored mechanisms for refining final relationship labels
by aggregating contextual information, such as proposing sequential and parallel message passing
strategies [21]. Others have noted strong regularities in visual scenes with motivate a formal definition
of motifs [24]. Most similar to ours is Graph R-CNN [22] which offers efficient relation proposals by
leveraging a learned relatedness kernel function to save on memory and computation. Our work is
built upon Graph R-CNN but propose to additionally supervise scene graph prediction via an image
reconstruction loss.

Graph Convolutional Networks (GCNs). Graph Neural Networks (GNNs) [3]] are a family of
neural network models that operate on arbitrary graph structures, and have been applied to a wide
range of domains. Graph convolutional networks (GCNs) [12] reason over graphs by performing a
series of localized operations typically involving only neighboring nodes for each node at each time
step. Similar to convolutional neural networks, the structure and edge strengths are chosen a priori.
In our work, we use GCNs to integrate contextual information informed by graph structure, with the
intuition that neighboring nodes provide crucial contextual information.

Deep Generative Models. Recent methods for synthesizing images include generative adversarial
networks (GANSs) [6] and variational autoencoders (VAE) [[L1]. These methods belong to a family
of deep generative models that can learn to synthesize images by learning an approximation of the
underlying data distribution given a finite training set of images. GANS consist of a generator and a
discriminator where the goal of the generator is to produce realistic images so that the discriminator
cannot tell the synthesized images apart from the real ones. Our work is built on GAN aimed for the
conditional image synthesis task where a synthesized image is produced via a series of upsampling
convolution on some input noise conditioned by a scene layout.

Conditional Image Synthesis. There is a large body of work across various forms of input data
for the task of conditional image synthesis. For example, class-conditional models learn to synthesize
images given a class label [16] [17], and text-conditioned models aim to generate images from text
[8]. Most related to our approach, [9] synthesizes images conditioned on an oracle scene graph



with subpar qualitative results. Our work is built on this approach by adopting a scene generation
module to infer scene graphs from images instead of relying on the ground truth. With an image
reconstruction module, our network is able to be trained end-to-end with supervision from both scene
graph and image levels.

3 Approach

3.1 Problem Statement

A scene graph 9] is a structured representation of an image, where nodes in a scene graph corre-
spond to object bounding boxes with their object categories, and edges correspond to their pairwise
relationships between objects. The task of scene graph generation is to generate a visually-grounded
scene graph that most accurately correlates with an image.

More formally, a scene graph can be defined by a 3-tuple set G = {B, O, R}:

e B = {b1,bo,....,b,} is the region candidate set, with elements b; € R* denoting the
-th

bounding box of the 7*" region
e O ={01,09,...,0,} is the object set, with element o; € N denoting the corresponding class
label of region b;

e R={ry,ra,...,rm} of pairwise relationships between those objects, where r;, denotes a
triplet of a start node (b;,0;) € B x O, an end node (b;,0;) € B x O, and a relationship
label z;_,; € R, where R is the set of all possible predicate types.

Given an image I, the goal is to decompose the probability distribution of the scene graph P(G | I)
into three components, as demonstrated previously by [24]:

Pr(G|I) = Pr(B|I)Pr(O | B,I)Pr(R| O, B,I) (1)

The bounding box component Pr(B | I) generates the set of candidate regions for the key objects
in the input image, given by the output of an off-the-shelf Faster RCNN detector [19]. The object
component Pr(O | B, I) uses the detected regions to predict the class labels of each region. The
relationship component Pr(R | O, B,T) is conditioned on the predicted labels, and infers the
pairwise relationships to generate the whole scene graph G.

3.2 Model Components

Bounding Box Detector: We follow previous work [22]] to obtain the bounding box localizations.
Given an input image I, we utilize a Faster RCNN to generate the region set B = {by, ba, ..., b, } of
size | B| = n. Each region is associated with an additional feature vector f; using the ROI pooling
layer [4]], which are subsequently fed into the relation proposal network.

Relation Proposal Network: For any two different objects (0;,0;) € O, there are two possible
relationships in opposite directions. Therefore, for N object proposals, there are N x (N — 1)
potential relations. Storing more relationships results in a larger scene graph with more expressivity,
but significantly increases the computational cost in the forward pass of the region proposal network.
To overcome this, we follow a similar approach to Graph R-CNN [] to take advantage of a learned
relatedness kernel function to reduce memory and computation costs [22].

Specifically, we consider the following kernel function:
f(0i,05) = (®(0i), ¥(0))),i # j 2

where ®(-) and ¥(-) are projection functions for subjects and objects, respectively. We construct a
score matrix S = {s;;}"*" for all object pairs that computes a measure of pairwise relatedness. To
do so, we instantiate ®(-) and W(-) as two multilayer perceptrons (MLPs) with identical architectures
but different parameters. We apply a sigmoid as the final layer to output scores between 0 and 1.
After obtaining the score matrix, we sort the scores in descending order and select the top K pairs.
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Figure 2: Examples of generated images from test set of Visual Genome. For each example we show
the original input image with object region proposals, the predicted scene graph, the reconstructed
image conditioned the predicted scene graph, and the reconstructed image from an oracle (sg2im)
with access to ground truth. Our approach can achieve similar qualitative results without access to
the annotated scene graph during image generation.

Graph Convolution Network: We utilize graph convolution networks (GCN) to aggregate contex-
tual spatial information over the output of the relation proposal network. The purpose of the GCN is
to transform the original node embeddings into a new set of context-aware embeddings. Using the
contextual embeddings, we can predict the label based on the feature vectors of two object nodes
given their corresponding subgraph contextual feature map. The prediction procedure is formulated

as follows [23]]:
R; j = softmax(frei([0i ® si;0; @ si;sk)])) 3)
0; = softmax(frnode(0:)) 4

where f,..; and f,,,4. denote the relation and node embedding mappings respectively, ® denotes the
graph convolution operation, and ; denotes concatenation.

Image Generator: To generate an output image from the scene graph, we first need to convert
the object embeddings into a spatial scene layout. For each object embedding o; € R, we expand
the embedding vector to size D x 8 x 8 and wrap it to position of the bounding box via bilinear

interpolation to give an object layout 0!"Y*" of size D x H x W, and sum over all i to obtain the

;
layout __ layout
scene layout S =)0 .

Given the scene layout, the purpose of the image generator G is to then synthesize an image that
respects the object positions and relations. We adopt a Cascaded Refinement Network [2] which
consists of a series of convolutional refinement modules to generate the image. Each convolutional
refinement module doubles the spatial resolution of the image in a coarse-to-fine manner. Each
module takes two inputs: (i) the hidden feature output of the previous module (where the first module
takes as input some Gaussian noise), and (ii) the scene layout S'*¥°u¢ which is downsampled to fit
the input size of the particular module.

Specifically, the two inputs are concatenated via the channel dimension and passed onward to a
pair of 3 x 3 convolution layers. The outputs at each module are upsampled via nearest-neighbor
interpolation before being passed as input to the next module. The output of the last module is passed
to two final convolution layers to produce the output image.



Discriminator: We adopt a conditional GAN loss [18] to supervise the quality of the reconstructed
image. In particular, we train the discriminator D(-) and generator G(+) by alternatively optimizing
the following objectives:

[:D = ]Em'\’preul [log D(az)] (5)
La = Eznpye[log(l — D(@)] + ALpixer ©)

where & ~ prie are outputs from the generator, A is the tuning parameter, and Ly is given by the
l; distance between the real image z and a corresponding fake image & as ||x — Z||;.

3.3 Training Procedure:

During training we optimize for two levels of supervision: scene graph level and image level.

The scene graph level loss is given by:
Esg = )\relﬁrel + )\objl:obj + >\bb£bb (7)

where L,.; denotes the relation classification loss, £,; denotes the object classification loss, and
Ly denotes the bounding box regression loss. The relation classification loss is defined as the cross
entropy loss with softmax over the total vocabulary of candidate relations. Similarly, the object
classification loss is over all the possible object categories. The bounding box regression loss is the
smooth [ loss.

The image level loss is given by Eq. (3) and (6). One can view the image reconstruction module as a
regularizer to improve the performance of scene graph generation. During backpropagation, we pass
the gradient from the losses (3), (6), (7) to update model parameters.

4 Experiments

Dataset. We evaluate our approach on the Visual Genome (VG) benchmark [13]. VG contains
108,077 images, 5.4M region descriptions, 1.7M visual question answers, 3.8M object instances,
2.8M attributes, and 2.3M relationships. On average, VG contains annotations of 38 objects and 22
relationships for each image. It is currently one of the most widely used and challenging benchmarks
for evaluating scene graph generation. In the experiments, we follow the procedure of prior work
[21], using the most frequent 150 object categories and 50 relationships. As a result, each image has
a scene graph of around 11.5 objects and 6.2 relationships. We also follow the same train/test split of
70%/30% respectively.

Implementation Details. We adopt a two-phase training procedure. First, we train the image
reconstruction module using the ground truth object annotations in the training set of VG. The
output size of the generator is 64 x 64 x 3 as well as the resized real image before inputting to
the discriminator. In each mini-batch step, we first update the generator GG; and then update the
discriminator D;.

Second, we jointly train the scene graph generator with the image reconstruction module. We use
a pretrained Faster R-CNN [[19] with a VGG-16 [20] backbone. The number of object proposals is
256. For each proposal, we perform ROI align [[7] pooling to get object and subgraph feature maps.
The subgraph regions are pooled to size 5 x 5 and the hidden dim size is chosen to be 512. We use
stochastic gradient descent (SGD) as the optimized with weight decay and dropout to help avoid
overfitting, using initial learning rate of 0.01 and decay rate 0.1.

Metrics. We evaluate our model on the following metrics:
e Visual phrase detection (PhrDet): the task of detecting the triplets (o;, 755, 0;) denoting the
object-relation-object phrases
e Scene Graph Generation (SGGen): task of detecting the objects in the image and recognizing

the correct pairwise relation

We follow [15] in reporting Top-K recall (Rec@ K) as the performance metric, which measures how
many labelled relationships are hit among the top K predictions.
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Figure 3: Qualitative results for conditional image synthesis on Visual Genome (VG) demonstrating
increasing scene graph complexity. The first column depicts a reference image sampled from VG
with the predicted bounding boxes. Each row begins with a simple scene graph and gradually adds
more objects and relationships to gain complexity. Here, note that scene graphs in the first column
are hand-crafted manually. Generated images demonstrate contextual knowledge and respect object
relationships (e.g. pizza on bed).

4.1 Qualitative Results.

Figure [2| shows examples of generated images from a held-out test set on Visual Genome. Each
column demonstrates a separate example. We show that our approach can learn to reconstruct the
image using the predicted scene graph from the input image. Crucially, our generated images are
roughly similar to that of an oracle (i.e. sg2im [9] that relies on a ground truth annotated scene graph.
We note that both approaches can roughly recreate the high-level semantics of the scene, such as
positions of objects and colors, but fail to faithfully reproduce a more fine-grained image at the pixel
level.

Figure 3] demonstrates the effect of increasing the complexity of scene graph during conditional image
generation. Here, we use hand-crafted scene graphs from the reference image to produce a series
of five reconstructed images, with increasing complexity from left to right. We see that generated
images demonstrate contextual knowledge of the scene and respect object relationships as complexity
increases. One interesting outlier is the last column of the last row which, upon the additional of the
triple "roof on bed", severly darkens the image of the bedroom.



Table 1: Results on PhrDet and SGGen Tasks on Visual Genome

Model PhrDet SGGen
Rec@20 | Rec@50 | Rec@100 | Rec@20 | Rec@50 | Rec@100
IMP [21] - 15.87 19.45 - 8.23 10.88
MotifNet [24]] - 23.8 27.2 - 23.5 27.6
Graph R-CNN [22] - - - 19.4 25.5 28.5
FactorizableNet [14] - 26.03 30.77 - 18.32 21.20
ours 24.1 30.5 33.1 23.8 28.2 32.6

4.2 Quantitative Results.

Table |1 presents our quantitative comparisons on our approach against numerous recent models,
including Iterative Messaging Passing (IMP) [21], MotifNet [24], Graph R-CNN [22]. We can see
that our approach outperforms all the existing methods in the recall on both PhrDet and SGGen tasks.
Compared to existing methods, our end-to-end approach utilizes an image reconstruction loss as an
additional supervisory signal to update the scene graph generation weights more robustly.

We posit that low-frequency categories of objects in the long tail distribution without many labels add
extraneous noise to the training loss. Therefore, with explicitly image level supervision, the model
has the option to not only rely on the class label of the training target but also more fine-grained pixel
loss.

5 Conclusion

In this work, we have proposed a method for scene graph generation that utilizes image-level
supervision allowing for end-to-end training from images to reconstructed images. In this manner,
one can interpret the scene graph level representation to be analogous to latent representation in
autoencoder models. Using this additional image-level supervision, our experiments show that our
approach is able to outperform recent state-of-the-art methods on scene graph generation on Visual
Genome. Our work demonstrates a step in the direction of explicitly incorporating common-sense,
discrete, and compositional structure as a latent representation in understanding visual scenes.

We hope that future work can explore a number of directions (in no particular order): investigating
a decoupling of scene graph generation and image synthesis modules in a more elegant manner;
exploring additional reasoning steps leveraging the structured graph representation for downstream
tasks such as visual question answering; applications to videos instead of images; leveraging 3D
structure as opposed to 2D.

The code is available at https://github. com/kevinstan/auto_encoding_sg
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