Auto-Encoding Scene Graphs with Image Reconstruction

	Motivation		
•	Goal: Learn to generate scene graphs from images and reconstruction by conditional image synthesis To fully understand the visual world requires not only recognizing individual objects, but also inferring the relationships and interactions between them Modern deep generative models excel in producing high-quality samples, but fall short in capturing compositional, object-centric semantic structure in visual scenes		
	sheep + by + sheep boat + in standing on	Obj	e
	behind tree above	Region Propo	'S2
	Contributions		
•	 We propose a method for scene graph generation in an end-to- end trainable fashion via <i>image reconstruction supervision</i> 		

- Auto-Encoding Scene Graphs consists of two parts:
- (1) Encoder: given an input image, proposes object regions by a region proposal network, prunes connections with relational proposal network, and aggregates contextual information via graph convolution, and outputs a scene graph
- (2) Decoder: Given a scene layout, feed noise into a cascaded refinement network to perform conditional image synthesis

Problem Statement

More formally, a *scene graph* can be defined by a 3-tuple set $G = \{B, O, R\}$:

- $B = \{b_1, b_2, ..., b_n\}$ is the region candidate set, with elements $b_i \in \mathbb{R}^4$ denoting the bounding box of the i^{th} region
- $O = \{o_1, o_2, ..., o_n\}$ is the object set, with element $o_i \in \mathbb{N}$ denoting the corresponding class label of region b_i
- $R = \{r_1, r_2, ..., r_m\}$ of pairwise relationships between those objects, where r_k denotes a triplet of a start node $(b_i, o_i) \in B \times O$, an end node $(b_j, o_j) \in B \times O$, and a relationship label $x_{i \to j} \in \mathcal{R}$, where \mathcal{R} is the set of all possible predicate types.

Given an image I, the goal is to decompose the probability distribution of the scene graph $P(G \mid I)$ into three components, as demonstrated previously by [17]:

 $Pr(G \mid I) = Pr(B \mid I)Pr(O \mid B, I)Pr(R \mid O, B, I)$

(1)

Embedding '

Vector: D

Kevin Tan

kevintan@cs.stanford.edu

 $||\mathbf{I} - \hat{\mathbf{I}}||_1$

Stanford Computer Science

Table: Comparisons on Visual Genome test set. We use Graph-RCNN for the scene graph generator outperforming the baseline of Iterative Message Passing (IMP). MSDN and NM-Freq refer to Multi-level Scene Description Network and Neural Motifs Frequency Prior, respectively.

6.9

 $11.4 \quad 13.7$

23.8

9.1

27.2

29.6 31.6 54.2 59.1

41.8

48.8

27.8

35.9

26.4

28.5

NM-Freq

Graph R-CNN