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Motivation Scene Graph Generation Experiments
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/ Contributions
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Auto-Encoding Scene Graphs consists of two parts:

(1) Encoder: given an input image, proposes object regions by a
region proposal network, prunes connections with relational

proposal network, and aggregates contextual information via -
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P ro b le m Sta te m e n t Scene Layout Procedure for Image Generation
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Table: Comparisons on Visual Genome test set. We use Graph-RCNN for the scene graph generator
outperforming the baseline of Iterative Message Passing (IMP). MSDN and NM-Freq refer to Multi-level
Scene Description Network and Neural Motifs Frequency Prior, respectively.




